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FEED-BASE-SIMULATOR EVALUATION OF A PILOT'S 

TERRAIN-FOLLOWING DISPLAY W I T H .  VARIOUS 

MODES OF PRESEmING INFORMATION 

By Thomas E .  Wempe 

Ames Research Center 
Moffett Field,  C a l i f .  

An exploratory study w a s  made of human a b i l i t y  t o  use a v i sua l  display 
t o  guide a high-speed a i r c r a f t  i n  close proximity t o  the  t e r r a i n .  The con- 
t r o l  dynamics of a s m a l l  a i r c r a f t  f ly ing  near sea l e v e l  at a Mach number of 
1 . 2  were simulated on an analog computer interconnected with a two-axis side- 
a r m  control ler  and a cathode-ray tube d isp lay .  The p i l o t ' s  t a s k  w a s  t o  guide 
the  a i r c r a f t  as closely as possible t o  simulated t e r r a i n  while minimizing a 
heading e r r o r .  No motion cues o r  other environmental s t r e s ses  were provided. 

It w a s  noted t h a t  the  p i l o t ' s  performance w a s  markedly influenced by 
var ia t ions  i n  the  v i sua l  display of t he  a i r c r a f t  a t t i t ude  and posi t ion 
r e l a t ive  t o  the  t e r r a i n .  

A 1-1/2-hour sustained terrain-following task with t h i s  f ixed-base 
simulation revealed no major degracLation i n  p i l o t  performance. 

INTRODUCTION 

The high-speed, low-level f l i g h t  i s  a par t icu lar ly  demanding mission of 
a t a c t i c a l  f i gh te r  during all-weather operation. T h i s  type of mission 
requires a method f o r  control l ing the  f l i g h t  path of t he  a i r c r a f t  t o  maintain 
close proximity t o  t h e  t e r r a i n  when v i sua l  conditions are  inadequate. Pre- 
vious s tudies  have considered methods varying from manual control  by a p i l o t  
viewing a radar presentation t o  completely automatic terrain-following 
systems. The r e s u l t s  of many of these invest igat ions are  summarized i n  
reference 1. 

A terrain-following system must provide suf f ic ien t  information so  t h a t  
the  p i l o t  can e i t h e r  control  the  a i r c r a f t  manually or monitor t he  performance 
of a completely automatic system t o  e f f ec t  manual recovery i n  an emergency. 
Though a number of par t icu lar  terrain- t racking displays have been t e s t ed ,  
there  appears t o  be a lack of information regarding human a b i l i t y  t o  use such 
displays f o r  extended periods of t ime. A l s o ,  not much data  i s  avai lable  
regarding the  e f f ec t s  of varying the  information presented on these displays.  

A s  a par t  of a general NASA study of t he  pi lot-vehicle  system f o r  
advanced a i r c r a f t  missions, a fixed-base simulator w a s  used t o  study manual 
terrain-following performance as affected by the  type of information d i s -  
played. The vehicle simulated w a s  an a t tack  a i r c r a f t .  The spec i f ic  



objectives of t h i s  i n i t i a l  study were to evolve a s i tua t iona l  display 
sui table  f o r  general  research on t h e  t e r r a in - f  ollowing task,  noting the  
e f f e c t s  of t h e  display on performance. 
vide t h e  p i l o t  continuously with readi ly  interpretable  information of t he  
present posi t ion and a t t i t u d e  of the  a i r c r a f t  with respect to the  t e r r a i n  and 
with predict ive information so t h a t  he can plan and execute a low ground- 
clearance f l i g h t  path.  It w a s  assumed t h a t  t h e  following information would 
be readi ly  avai lable  as quantified data:  
rain d i r e c t l y  below; and ( 2 )  angular measures from t h e  horizon to t he  t e r r a i n  
at  two fixed s l an t  ranges. 

The s i tua t iona l  display was to pro- 

(1) absolute height above the  t e r -  

It i s  emphasized t h a t  t he  simulation of t h e  terrain-following task  
discussed i n  t h i s  report  included no motion e f f e c t s  on the  p i l o t ,  which a t  
t h i s  speed and f l i g h t  l e v e l  could be very severe.  It i s  a l so  pointed out 
t h a t  the  complexities of a i r c r a f t  management, t h a t  is ,  power control,  trim, 
navigation, e t c  . , were reduced t o  a simplified cont ro l  of t he  f l i g h t  path.  
Further, t h i s  invest igat ion w a s  l imited to a f ixed course t a sk  where only the  
t e r r a i n  i n  a s t r a igh t  l i n e  ahead of the  a i r c r a f t  w a s  considered. The inves t i -  
gation included an evaluation of use of a terrain-following display f o r  r e l a -  
t i v e l y  long time periods and a comparison of t he  r e s u l t s  obtained from the  
present invest igat ion with those of previous s tudies  . 

SYMBOLS 

A 

H 

K 

N 

r 

- 

SK 

S 

T 

a 

a i r c r a f t  a l t i t ude ,  f t  

a i r c r a f t  height above t e r r a i n ,  f t  

mean of var iable  K; f o r  example, A i s  t h e  mean a i r c r a f t  a l t i t ude  

number of data  points  i n  sample 

- 

correlat ion coef f ic ien t  

standard deviation of variable K; f o r  example, SA i s  the  standard 
deviation of a i r c r a f t  a l t i t ude  

Laplace operator 

t e r r a i n  a l t i t ude ,  f t  

angle of a t tack  

t r im angle of a t tack  

a i le ron  def lect ion 

elevator def lect ion 
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w a s  

p i tch  a t t i t u d e  

bank angle 

yaw angle 

a i r c r a f t  undamped short-period na tu ra l  frequency i n  pi tch,  radians/sec 

a i r c r a f t  short  -period damping r a t i o  i n  p i t ch  

METHOD 

Equipment 

The equipment used in  providing a rudimentary simulation of t he  problem 
an oscilloscope f o r  presentation of s teer ing information, a two-axis side- 

a r m  cont ro l le r ,  a cha i r ,  an analog computer plus a low-frequency function 
generator, a Gaussian noise generator and a motorized switch f o r  computation 
of the  t e r r a i n  kinematics and a i r c r a f t  dynamic response and an eight-channel 
s t r i p  recorder f o r  data recovery. 

S imulat ion 

The a i r c r a f t  dynamics simulated (appendix A)  were representative of an 
at tack a i r c r a f t  f l y ing  near sea l eve l  at a Mach number of 1 . 2 .  Several sim- 
p l i f i ca t ions  i n  these dynamics were programmed on the  analog computer: 

1. Variations i n  th rus t  and ve loc i ty  were omitted. 

2. Only s m a l l  perturbations about s t r a igh t  and l e v e l  f l i g h t  were 
considered. 

3 .  Only p i tch  and roll t r ans fe r  functions were simulated. 

4. The heading angle as presented w a s  included i n  the  problem only t o  
increase the  p i l o t ' s  workload, and though it w a s  somewhat r e a l i s t i c ,  
it w a s  not a t r u e  representation of t h i s  a i r c r a f t  type .  

A Gaussian noise generator and analog equipment provided the  a l t i t u d e  
var ia t ion .  Delay c i r c u i t r y  w a s  employed t o  represent points 10 seconds ahead 
(2-1/2 miles) ,  5 seconds ahead (1-1/4 miles) ,  and d i r ec t ly  beneath the  air-  
c r a f t .  A s  explained i n  appendix B, where the  t e r r a i n  generation i s  described 
in  greater  d e t a i l ,  two d i f fe ren t  " terrains"  were used in  t h i s  invest igat ion.  
The f i r s t  w a s  somewhat rough as compared t o  a sample of California t e r r a i n ,  
but w a s  used throughout t he  display evolution phase. After a sui table  d i s -  
play w a s  established, l e s s  severe t e r r a i n  w a s  used f o r  t he  concluding t racking 
run. 
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The s i t u a t i o n a l  display w a s  presented on a 5-inch cathode-ray tube (CRT) 
and at  a l l  times contained elements depicting t h e  horizon reference, heading, 
and the  t e r r a i n  at  points  0, 5, and 10 seconds ahead of t h e  a i r c r a f t .  This 
display w a s  s i m i l a r  to t h a t  used i n  a previous study, where nine tes t  p i l o t s  
did te r ra in- f  ollowing i n  a G-seat with d i f f e ren t  wind gust leve ls  simulated 
( r e f .  2), i n  t h a t  it presented the  same kind of information. However, in the  
current study, several  changes in t h e  method of presentation were made during 
the  study..and results noted. 
terrain-following mode. 
display,  depicting t h e  a t t i t u d e  and posi t ion of t he  a i r c r a f t  ( f i g .  1) used 
i n  the  study. 

Figure 1 i s  a sketch of an a i r c r a f t  i n  the  
Figure 2 presents t he  var ia t ions  in the  s i t ua t iona l  

Test Setup 

The subject was seated so t h a t  h i s  l i n e  of v i s ion  w a s  perpendicular to 
t he  CRT face and h i s  eyes were approximately 19 inches from it. The penci l  
cont ro l le r  was placed on a stand to h i s  r igh t  a t  a suf f ic ien t  height so  t h a t  
he could r e s t  h i s  forearm f la t  on top  of t he  cont ro l le r  while holding the  
cont ro l  s t i c k  knob with h i s  thumb, index f inger ,  and foref inger .  Figure 3 
shows the  subjec t ' s  posi t ion r e l a t ive  to t he  CRT and con t ro l l e r .  

For each terrain-following run the  following da ta  were recorded 
continuously: heading e r ro r ,  r a t e  of climb, normal acceleration, bank angle, 
e levator  angle , a l t i t u d e  above t e r r a i n ,  t e r r a i n  height below multiplexed with 
a i r c r a f t  a l t i t ude ,  and t e r r a i n  height 10 seconds ahead. 

Figure 4 i s  a block diagram of the  experimental configuration. 

Test Procedure 

Since t h i s  study w a s  exploratory, the  general  approach w a s  one of t r i a l  
and revis ion of t he  s i t ua t ion  display.  F i r s t ,  a display with elements r e l a -  
t i v e l y  common to experience w a s  established and the  p i l o t  practiced following 
the  t e r r a i n  as closely as he could without contacting the  ground u n t i l  he f e l t  
t h a t  he w a s  no longer improving h i s  performance (10 to 20 minutes pract ice  was 
usually required);  then t r i a l  runs of approximately 30 minutes were made and 
time h i s t o r i e s  recorded. At t h i s  point,  t he  p i l o t ' s  subjective views along 
with h i s  record determined changes to the  display, and then the  cycle w a s  
repeated. No e f f o r t  w a s  made to adjust  f o r  t he  learning of the  subject 
throughout t he  evolution of the  displayed information; consequently, h i s  
e a r l i e r  performance on the  unimproved display probably w a s  poorer than it 
would have been i f  t h a t  display had been represented a t  the  end of the  t e s t  
s e r i e s .  However, it w a s  believed t h a t  the  p i l o t ' s  opinion and obvious d i s -  
c re te  jumps in performance would obviate, at  least f o r  t h i s  exploratory study, 
es tabl ishing a balanced experimental plan to off s e t  t he  e f f e c t s  of learning, 
fa t igue ,  e t c .  
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After acceptable displays f o r  t he  simulated t a sk  were established, 
several  terrain-following runs were made. 
analyzed t o  obtain performance da ta .  

Pen records of these runs were 

The subject w a s  t h e  experimenter:’ male; 37 years old; moderate 
experience as cont ro l le r  of f l i g h t  simulators; approximately 2000 f ly ing  
hours i n  l i g h t  a i r c r a f t ,  ra ted as commercial p i l o t ,  Single Engine Land 
( S .E .L . ) f l i g h t  i n s t ruc to r .  

The following t ab le  summarizes the  da ta  that were analyzed. 

1 -  . - 

LDe s ignat ior: 

C 

D 

Display Task 
durat ion:  

Description min 
~ 

Terrain ahead displayed as 

CRT 
angular measures, 6O/cm on 15 

I 

Terrain ahead displayed as 
r e l a t ive  height , 333 ft/cm, 
with al t imeter  

Terrain displayed as r e l a -  
t i v e  height,  333 ft/cm, 
m a x i ”  of T,, added 

Display same as E except 

and heights scaled 250 
ft/cm. 

p i tch  angle scaled 2.2’/cm 13 

Terrain simulatio 

High frequency 
t e r r a i n .  Peaks t o  
about 2500 f e e t .  

I 1  

I t  

Low frequency 
t e r r a i n .  Peaks t o  
about 2500 f e e t  . 

RESULTS AI\sD DISCUSSION 

Effects of Display Mode on Terrain-Following Performance 

Several display modes, conceptually similar but d i f fe ren t  i n  d e t a i l  
( f i g s  . 2( a )  through 2( e )  ), were evaluated. 
d e t a i l  t he  evolution of the  various display modes evaluated and some qual i ta -  
t i v e  impressions of t he  p i l o t  with regard t o  t h e  s u i t a b i l i t y  of the  displays 
f o r  t he  terrain-following t a s k .  

Appendix C describes i n  some 

In the  present section, a summary of terrain-following performance f o r  
several  selected display modes i s  provided i n  the  following t a b l e .  ( A  d i s -  
cussion of the  s t a t i s t i c s  used to evaluate terrain-following performance i s  
given i n  appendix D; however, a br ie f  descr ipt ion is  repgated he re . )  In  the  

‘Terrain-f ollowing performance evaluation i n  a subsequent study indicated 
t h a t  t he  performance leve ls  of two h e s  t e s t  p i l o t s  and of the  subject of t h e  
present study were roughly equivalent . 
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t ab le ,  r i s  the  cor re la t ion  coeff ic ient  between t h e  t e r r a i n  a l t i t u d e  T and 
t h e  aircraft a l t i t u d e  A; SA and SJ are  t h e  respective sample standard devia- 
t i ons ;  H and 'SH 
a i r c r a f t  height above the  t e r r a i n ,  t h a t  is, H = A - T; N is  the  number of 
independent sample points  used t o  determine t h e  above s t a t i s t i c s .  

a r e  the  sample mean and sample standard deviation of t h e  

Display 

C 

D 

E 

Description 

Terrain ahead displayed 
as angular measures, 
6O/cm on CRT 

Terrain ahead displayed 
as  r e l a t  ive height , 
333 ft/cm, with 
a l t  ime t e r 
Terrain displayed as 
re la t ive  height, 333 
ft/cm, maximum of T,, 
zdded 

N 

80 

c84 

36 

Sampling 
rate,* sec 

10 

- 

10 

10 

I 
f t  r 

0.71 

* 90 

me determination of  sampling r a t e  i s  explained i n  appendix B .  

The improvement i n  performance as the  display w a s  evolved i s  qui te  
evident i n  the  data  of t h i s  t a b l e .  The cor re la t ion  coeff ic ient ,  r, a measure 
of t he  p i l o t ' s  a b i l i t y  t o  place the  f l i g h t  path of the  a i r c r a f t  i n  phase with 
the  t e r r a i n ,  shows a consistent increase t o  0.94, t h e  value obtained f o r  
display E .  The r a t i o  of SA t o  E$I approaches 1 (from the  "overcontrol" 
s ide)  as t h e  cor re la t ion  - coeff ic ient  approaches 1. Both the  mean height 
above the  t e r r a i n ,  H, and the  standard deviation of height,  SH, show consis- 
t e n t l y  decreasing values as improvements were made t o  t h e  display.  

Figures 5 ,  6, and 7 a re  histograms of a i r c r a f t  height above the  t e r r a i n  
and graphically show t h i s  improvement i n  performance as the  display w a s  
improved. 

Terrain-following w a s  a l so  done with what w a s  considered t o  be an 
improved version'of display E, namely, display F; however, t he  t e r r a i n  simu- 
la ted  was changed at  t h i s  point i n  the  study and, hence, t he  r e s u l t s  were not 
d i r e c t l y  comparable. This f i n a l  display i s  described i n  appendix C .  

Terrain-Following f o r  an Extended Period of Time 

The da ta  obtained from the  90-minute terrain-following run using 
display D and an a l t imeter  were analyzed by 10-minute periods and are  pre- 
sented below. Note t h a t  t he  f i rs t  10 minutes of t h i s  t a s k  were allowed f o r  
pract ice  and were not analyzed. 
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10 -minut e 
time period 

1 

2 

3 

4 

5 

6 

7 

8 
. .  - 

Total  
. . . ~  . 

! CI I 
61 0.93 

61  .81 

6 1  .go 

57* .94 

61 .92 

61 -95 

61 .88 

61 - 89 

*Four samples occurred during a r e se t  t o  correct  f o r  
computer d r i f t  and were removed. 

It ppeared t h a t  there  was a period of adjustment and s e t t l i n g  down 
the  beginning of t h i s  run (time periods 1 and 2) followed by a period of 
sustained performance showing a s l igh t  improvement toward the  end (time 
periods 3 t o  6)  and ending with a s l igh t  reduction i n  performance (time 

t 

periods 7 and 8 ) .  
of approximately 40 f e e t  , followed by s l igh t ly  e r r a t i c  performance ; however, 
t h i s  w a s  due t o  t he  subject-operator's looking away f rom the  display t o  view 
a watch. I n  sp i t e  of these noticeable differences i n  performance, it can be 
concluded t h a t  no s igni f icant  changes i n  performance were evident over t he  
80-minute portion of t h i s  l-l/2-hour t racking run. 

In  the  last t w o  minutes of t h i s  run, there  was a near m i s s  

A s  t h e  task  extended through time, t he  subject experienced several  b r ie f  
periods when the  s ignals  on the  CRT appeared confused ( i . e . ,  blurred together 
and lacking meaning); however, h i s  recovery w a s  rapid enouge not t o  a f f ec t  
h i s  performance noticeably.  This blurr ing m a y  have been aggravated by the  
in t ens i ty  o r  f l i cke r ing  of t h e  CRT; however, it w a s  not investigated f u r t h e r .  
It w a s  evident during these simulated terrain-following t a sks  t h a t  t he  subject 
could be allowed very l i t t l e  time f o r  diver t ing h i s  eyes away from the  display 
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scanning pa t te rn  without a subsequent e f f ec t  on h i s  performance. 
above, t he  mere requirement of reading a w r i s t  watch could have a marked 
e f f ec t  on terrain-following performance. 

A s  mentioned 

A general  f ee l ing  of tenseness was experienced throughout t h e  run, 
followed by a mild f ee l ing  of fa t igue  a f t e r  culmination of the  t a s k .  

Though normal accelerat ion (a t  the  center  of gravi ty  of the  simulated 
vehicle)  w a s  recorded, it w a s  doubtful t h a t  t h i s  measure had t o o  much meaning 
i n  these t e s t s ;  t h a t  i s ,  had there  been motion feedback, the  over -a l l  acceler-  
a t ion  might have been reduced by the  p i l o t ' s  reluctance t o  impose s izable  
loads upon himself, or  increased by coupling between the  p i l o t ,  control  sys- 
tem, and a i r c r a f t  dynamics. It w a s  noted t h a t  t he  maximum accelerations 
decreased from -2.3 and &.Og f o r  display c t o  -2.0 and A.7g  f o r  display E, 
which corresponded more closely t o  r e s u l t s  from ac tua l  te r ra in- f  ollowing 
f l i g h t s  as reported i n  reference 3 .  
of t h i s  reference i s  made i n  the  next sect ion.  

A more de ta i led  comparison with the  da ta  

Comparison With Other Terrain-Following Data 

In  order to provide some information on the  correspondence of t he  
r e s u l t s  of t he  present study with r e s u l t s  of other terrain-following inves t i -  
gations, the  following t ab le  w a s  prepared. 
data  of reference 3 and the  moving-cockpit data  of reference 4 were 
extracted and analyzed. The r e s u l t s  f o r  display F (see appendix C )  were used 
f o r  comparison with previous data  since t h e  t e r r a i n  charac te r i s t ics  used with 
t h i s  display corresponded closely t o  t he  ac tua l  t e r r a i n  flown over i n  the  
f l i g h t  study. 

Selected portions of t he  f l i g h t  

Description of 
terrain-fol lowing t a s k  - 

Visual i n  a Hunter 6 (s ingle  sea t  
f i g h t e r )  over h i l l y  deser t  a t  Mach num- 
ber 0.88 with minimum e f f o r t .  Gust 
e f f e c t s  were marked t o  unpleasant. 
ima accelerat ion,  0 and +1.7g. 
Same as 1 above but a t  Mach number 0 . 7  
with maximum e f f o r t .  Gust e f f e c t s  were 
marked t o  unpleasant. Maxima of accel-  
erat ion,  -0.6 and +2.4g. __. 

Instrumented i n  a G-seat simulator using 
a compensatory height t racking display 
and other instruments at  Mach number 0.7. 
Short-period longi tudinal  dynamics were : 
% = 6.3 radians/sec, f = 0.4; gusts at 
6 f t / s e c  r m s .  
Current study using display F and low- 
frequency t e r r a i n .  Velocity simulated: 
Mach number 1 . 2 .  Short-period longi- 
t u d i n a l  dynamics: 
f = 0.3; no gus ts .  
t ion ,  -0.5 and +3.0g (neg1e;ting sharp 

Max- 

% = 6.6 radians/sec, 
Maxima of accelera- 

spikes) . - 

N 

36 

36 

17 

30 

sampling 
r a t e  * 

one per 
10 sec 

one per 
10 see 

one per 
10 sec 

one per 
30 sec 

r 

0.83 

.966 

.987 

.94 

f t  

* = 0.77 
468 

- 545 = 1.08 
506 

= 1.07 
121 

384 = 1.09 
351 

E, 
f t  

608 

306 

202 

296 

SH, 
f t  

261 

142 

22 

13 1 

%e sampling r a t e  f o r  tasks  1-3 w a s  a r b i t r a r y  since the  t e r r a i n s  were not analyzed f o r  
autocorrelation. 
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The data  f o r  tasks  1 and 2 were obtained f rom reference 3 .  The 
improvement i n  performance f r o m t a s k  1 t o  task 2 is  very apparent i n  t h i s  
t a b l e .  
suggested by the  lower value of r coupled with the  r a t i o  of SA/ST being 
l e s s  than 1. The data  f o r  task 2 give considerable support t o  t he  descr ipt ion 
"maximum e f f o r t . "  The value of r approaches 1, the  r a t i o  of SA/ST 
approaches 1, and 

That the  p i l o t  of t a s k  1 w a s  smoothing o r  f i l t e r i n g  the  t e r r a i n  i s  

?f i s  low re l a t ive  t o  t he  type of t e r r a i n .  

When the  data  of t a sk  2 were compared with t h a t  of t he  current-study f o r  
display F, s i m i l a r i t i e s  were noted i n  the values of 
s l i g h t l y  b e t t e r  terrain-following w a s  evident i n  the  performance of t a s k  2 .  
That t he  value of f o r  t a s k  2 w a s  s l i gh t ly  higher w a s  a t t r i bu ted  t o  the  
higher amplitude of t h e  t e r r a i n  f o r  that task  (as explained i n  appendix D, 
the  values SH and ST are  r e l a t e d ) .  A histogram of height above the  t e r r a i n  
performance f o r  display F i s  presented i n  f igure  8. 
t a sk  2 i s  presented i n  f igure  9 .  
l i m i t s  encountered i n  t a s k  2, -0.6 t o  +2.4g, were somewhat s imilar  t o  those 
simulated f o r  performance w i t h  d isplay F, -0.5 t o  +3 .Og. 

SA/%, r, and H, though 

SH 

A s i m i l a r  f igure  f o r  
It w a s  noted a l so  t h a t  t he  acceleration 

Task 3 in  the  above t ab le ,  sampled f r o m  reference 4 ( f i g .  B - l ) ,  
approaches perfect terrain-following at a fixed clearance he ight .  
performance l eve l  w a s  possible,  considering t h a t  the  p i l o t  did not have infor-  
mation of the  t e r r a i n  ahead (cont ro l  w a s  achieved primarily by use of an 
a l t i t ude  e r ro r  display and a subsidiary instantaneous rate-of -climb ins t ru-  
ment), i s  a t t r i bu ted  primarily t o  the  subdued t e r r a i n  represented 
(ST = 121 f t )  . 
t e r r a in - f  ollowing performance can legit imately be compared only when the  
" terrains"  involved are  r e l a t ive ly  s i m i l a r  i n  configuration. 

That t h i s  

T h i s  example i s  mentioned t o  emphasize t h a t  pi lot-vehicle  

In conclusion, i f  t he  considerable differences i n  environment a re  
neglected, t he  s imi l a r i t y  of  t h e  " terrains"  (see f i g s .  l O ( a )  and 10(b) and 
the  discussion i n  appendix B)  and performance of task 2 and the  current study 
suggest tha t  display F provided much of t he  information obtained f r o m  a 
s t r a igh t  -ahead view through the  windshield of a l o w - f  ly ing a i r c r a f t .  

CONCLUDING REJUEKS 

From r e s u l t s  of a fixed-base simulation of a low-level, high-speed 
terrain-following task ,  t he  following observations were made : 

Comparative terrain-following performance measures f o r  several  display 
modes showed t h a t  performance improved progressively as: 

1. The t e r r a i n  points  ahead were displayed as heights r e l a t ive  t o  
t he  a i r c r a f t ,  ra ther  than as angles r e l a t ive  t o  the  horizon, 

2 .  The p i tch  angle w a s  magnified, compared t o  t h e  scal ing f o r  
standard a t t i t u d e  instruments f o r  a i r c r a f t  , 
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3 .  An indicator  w a s  added, providing continuous information on 
maximum heights of t he  t e r r a i n  ahead ( i  .e ., maxima of t e r r a i n  10 see ahead) . 

The r e s u l t s  of sustained simulated t e r r a i n  following with a v i sua l  
display f o r  1-1/2 hours indicated t h a t  no s igni f icant  degradation in  perform- 
ance had occurred, though the  subject w a s  mildly fa t igued .  

The close correspondence between the  terrain-following r e s u l t s  of the  
present study and those of a previous f l i g h t  study ( f o r  roughly s i m i l a r  t e r -  
r a ins )  suggests t h a t  t he  display used provided much of t he  information pro- 
vided by a straight-ahead view through the  windshield of a low-flying 
a i rp lane .  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Calif ., June 15, 1964 
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APPENDIX A 

Aircraf t  Dynamics 

The following t r ans fe r  functions were programmed on an analog computer 
t o  simulate the  dynamics of an a i r c r a f t  f l y ing  near sea l eve l  at a Mach num- 
ber  of 1 . 2 .  

Longitudinal : 

Lateral  d i rec t iona l :  

-5O.3(S + 1.07) 
s(s2 + 3.61 s + 44.2) 

- - , radian/radian 

- -23,844(S - 2.9) f t / s ec2  
> - 

s(s2 + 3.61 s + 44.2) radian 
-. 

f t  
radian 

- 1 A  - - -  
s2 &e ’ 

( s i d e s l i p  assumed zero) 

-118 radian 
radian 

‘p= 
6a S(S + 3-79) ’ 

K w a s  a r b i t r a r i l y  adjusted t o  give a of 1/40 cm/sec per degree of Cp on 
the  CRT . 

Control Character is t ics  

The side-arm penci l  cont ro l le r  forces  were: 

Elevator : 

0.067 lb/deg of e levator  maximum t r ave l ,  0 .8  i n .  a t  1 l b  

Aileron : 

0.16 lb/deg of a i le ron  maximum t r ave l ,  1 . 3  i n .  at 1.6 l b  

11 



DESCRIPTION OF TERRAIN GENERATED 

An examination of cross-sectional cu ts  through t e r r a i n  suggested t h a t  a 
reasonable approximation of a section of t e r r a i n  could be accomplished by 
summing a long- and a short-period wave, where t h e  long-period wave was 
sinusoidal t o  represent gradual changes i n  t e r r a i n  elevation and the  short-  
period wave w a s  peaked t o  represent h i l l t o p s  and va l l eys .  For the  purpose 
of t h i s  study the  long-period t e r r a i n  waves were ignored since they appeared 
t o  have a r e l a t ive ly  gradual r a t e  of ascent and descent and would probably 
introduce only minor problems i n  terrain-following . The short -period waves, 
however , would obviously introduce considerable d i f f i c u l t y  in  low-level 
terrain-following, and, hence, were used here t o  simulate t h i s  portion of 
t e r r a i n  cha rac t e r i s t i c s .  

It w a s  empirically determined t h a t  a reasonably good approximation t o  
the  t e r r a i n  short-period waves could be obtained by squaring f i l t e r e d  Gaussian 
noise .  The f i l t e r  used f o r  t he  bulk of t h i s  study w a s  second order with a 
damping r a t i o  of 0.7 and a na tura l  frequency of 0.2 radian/second (0.13 
cycles/mile).  The amplitude w a s  adjusted so  as t o  generate peaks of about 
1000 f e e t ,  with occasional tops above 2000 f e e t .  
which, as viewed f r o m  the  a i r c r a f t  a t  a Mach number of 1 .2 ,  sometimes varied 
up t o  300 f t / s e c .  
Figure l l ( b )  i s  a sample of the  t e r r a i n  cross  sect ion as generated. 

This produced " terrain"  

Figure l l ( a >  presents a t y p i c a l  histogram of t e r r a i n  r a t e s .  

A somewhat s imilar  scheme f o r  t e r r a i n  generation w a s  employed with a 
reasonable match t o  r e a l  t e r r a i n  by the  Cornell Aeronautical Laboratory i n  
reference 5 .  In  t h i s  more complicated scheme t h e  f i l t e r i n g  and squaring w a s  
done d i g i t a l l y  with random numbers and included a long-period e f f e c t .  The 
appearance of the  t e r r a i n  generated f o r  t h a t  study, however, w a s  not markedly 
different  from the  appearance of the  t e r r a i n  resu l t ing  from the  ra ther  simple 
scheme used in  t h i s  r epor t .  

Pr ior  t o  the  last tracking run of t h i s  study the  t e r r a i n  a s  generated 
was compared with a cross  section of h i l l y  Cal i fornia  t e r r a in ,  Oakland t o  
avena1 v i a  V 107, and it was decided t h a t  though the  amplitude of the gener- 
ated t e r r a i n  reasonably approximated the  amplitude of t he  high-frequency 
content of the  California t e r r a in ,  the occurrence of "h i l l s "  i n  the  generated 
t e r r a i n  was too frequent .  Subsequently, t he  na tu ra l  frequency of the  f i l t e r  
w a s  reduced t o  0.067 radian/second (0.043 cycle/mile) as a be t t e r  approxi- 
mation. Figure 12  shows a sample of each of these ' ' t e r ra ins ."  

In t he  course of t h i s  investigation the  terrain-following performance 
with display F ( t e r r a i n  f i l t e r  s e t  a t  
t o  a sample of terrain-following performance extracted from reference 3,  i n  
which the  t e r r a i n  w a s  a c tua l  h i l l y  African dese r t .  
'rterrainsI'  it w a s  noted t h a t  the  African deser t  had a more plateau-like 
character with each h i l l  r i s ing  t o  approximately 1500 f e e t ,  while the  height 
of the  h i l l s  of t he  current study exhibited more v a r i a b i l i t y  but a lower 

12 

% = 0.067 radian/second) was compared 

In comparing these two 



average. A l s o ,  t he  occurrence of h i l l s  i n  the  sample of African deser t  w a s  
more frequent than i n  t h e  current study; however, when the  t w o  t e r r a i n s  were 
portrayed on the  same time scale as they would appear when viewed f r o m  the  
a i r c r a f t ,  t h i s  difference w a s  not so apparent ( f i g s .  10(a)  and 1 0 ( b ) ) .  

It w a s  believed t h a t  t he  major difference between these two t e r r a i n s  as 
viewed f r o m  the  a i r c r a f t  would be t h a t  the  African deser t  w a s  rougher and 
required more cont ro l  but a l s o  contained fewer surpr ises  (e  .g ., the  sudden 
appearance of a h i l l  over 2000 f e e t  preceded by a se r i e s  of h i l l s  under 
TOO f e e t .  

The t e r r a i n  as generated w a s  designated as the  t e r r a i n  height 10 seconds 
ahead, and then, by use of 5-  and 10-second Pade delay c i r c u i t s ,  t he  t e r r a i n  
heights at points 5 seconds ahead and d i r ec t ly  below, respectively,  were 
obtained. Notice t h a t  t h i s  technique of simulating t h e  t e r r a i n  always pro- 
vided the  height of t h e  t e r r a i n  ahead, even though i n  r e a l i t y  the  p i l o t  might 
not always have t h i s  information. For example, if t he  a i r c r a f t  were qui te  
close to t he  t e r r a i n  and approaching a ra ther  peaked h i l l ,  at some posi t ion of 
t h e  a i r c r a f t ,  t he  t e r r a i n  a t  f ixed distances ahead might be on the  far side 
of t he  h i l l  and not be v i s i b l e .  
through" the  h i l l s  i n  t he  simulation did not mater ia l ly  influence performance 
because it would occur only infrequently and would be noticeable only in  the  
10-second terrain-height  indicator during or s l igh t ly  before pushover; a t  
t h i s  time, the  p i l o t  would not be attending t o  t h i s  indicator  other than to 
note t h a t  it w a s  not r i s i n g .  

It i s  reasoned t h a t  t h i s  a b i l i t y  to "look 

There w a s  some cur ios i ty  concerning the  d i s t r ibu t ion  function of t e r r a i n  
amplitude as generated, since t h i s  w a s  expected t o  appear t o  some extent i n  
the  d i s t r ibu t ion  of height above the  t e r r a i n .  The output of t he  Gaussian 
noise generator used had the  following amplitude d i s t r ibu t ion  function: 

where is w a s  some a rb i t r a ry  constant representing the  standard deviation 
( a l so  RMS in  t h i s  case since the  mean w a s  z e ro ) .  

The e f f ec t  of f i l t e r i n g  ( a  l i nea r  operation) would only change is, 
leaving the  form of the  d i s t r ibu t ion  function unchanged. 

The e f f ec t  of squaring the  f i l t e r  output, however, w a s  t o  transform the  
d i s t r ibu t ion  function to a function of T, where T = X2: 



which i s  a chi-square d i s t r ibu t ion  with K = 1 degree of freedom. 

This w a s  ve r i f i ed  by f i t t i n g  a chi-square d i s t r ibu t ion  t o  a normalized 
sample of generated t e r r a i n  and subjecting the  f i t t e d  d i s t r ibu t ion  t o  a 
goodness-of-fit t e s t .  The r e s u l t s  indicated good agreement. 

The implication of t he  foregoing discussion w a s  t h a t  i f  t he  p i l o t  of t he  
current study did any smoothing of the  t e r r a i n  or i f  h i s  height above the  
t e r r a i n  w a s  proportional to t he  t e r r a i n  height , then the  d i s t r ibu t ion  function 
of height above the  t e r r a i n  would contain a chi-square element (when normal- 
ized by appropriate scal ing)  and would be skewed. 
s tan t ia ted  by histograms of height above t e r r a i n  i n  f igu res  5 t o  8. 

This hypothesis is  sub- 

Another consideration given t o  t he  t e r r a i n  generated w a s  the  auto- 
covariance introduced by the  l i nea r  f i l t e r ,  inasmuch as it w a s  expected t h a t  
independent samples of da ta  at  d iscre te  points  i n  time would be desired f o r  
analysis .  
solution of the  approximation, Aw AT = 1 (where Am i s  the  spec t ra l  band- 
width and AT i s  t h e  correlat ion time), def ines  an in t e rva l  outside of which 
the  autocorrelation function takes  comparatively small values (approximately 
1/2 or  l e s s  of t he  autocorrelat ion a t  For the  t e r r a i n  used i n  the  
bulk of t h i s  invest igat ion AT x 5 seconds; f o r  t h e  t e r r a i n  used i n  the  con- 
cluding run AT = 15 seconds. This implied t h a t  sampling r a t e s  of about 10 
and 30 seconds, respect ively,  might be used t o  obtain reasonably independent 
samples. This w a s  ve r i f i ed  by subjecting samples of t he  high frequency and 
the  low frequency t e r r a i n  t o  an invest igat ion of t he  autocorrelation present.  
In  the  high frequency case ( i . e . ,  % = 0.2 radian/sec),  the  autocorrelation 
w a s  negligible at  AT = 10 seconds. 
% = 0.067), t he  autocorrelation w a s  70 percent a t  
cent a t  AT = 20 seconds, and 6 percent at 
autocorrelation a t  AT = 0.  

A s  suggested i n  reference 6, p .  20 f f ,  f o r  a l i nea r  f i l t e r  t he  

T = 0). 

I n  the  low frequency case ( i  .e .  , 
AT = 10 seconds, 30 per- 

AT = 30 seconds r e l a t ive  t o  t he  



APPENDIX c 

EVOLUTION OF SUITABU TEXRAIN-FOLLOWING DISPLAY 

Figure 1 is  a sketch of an a i r c r a f t  f ly ing  i n  proximity t o  the  t e r r a i n .  
It i s  the  a t t i t ude  and r e l a t i v e  posi t ion of the  a i r c r a f t  i n  t h i s  sketch t h a t  
i s  shown i n  each of t he  subsequent sketches of t h e  various s i t ua t iona l  d i s -  
plays used. The displays were evolutionary; t h a t  i s ,  each successive display 
w a s  i den t i ca l  t o  i t s  predecessor except f o r  the  modifications discussed below. 

Display A 

The elements of t he  f i r s t  display ( f i g .  2 ( a ) )  were established as 
follows. Because the  primary reference i n  a i r c r a f t  cont ro l  i s  the  horizon, a 
horizon bar w a s  deemed a requirement of the  display. The zero reference and 
scaling used were s i m i l a r  t o  those of a standard a i r c r a f t  gyro horizon ins t ru-  
ment. A l s o ,  because the  distance t o  the  t e r r a i n  below i s  important i n  t h i s  
task ,  t h i s  information w a s  represented by a horizontal  l i ne  displaced downward 
from the  center of the  display t o  indicate height d i r ec t ly  above the  t e r r a i n .  
The scaling s e t  a t  333 ft/cm permitted 1500-foot var ia t ions  in  height.  
addition, it w a s  assumed t h a t  predict ive information required f o r  successful 
terrain-following could be provided by using a v e r t i c a l  scanning penci l  radar 
t o  determine inc l ina t ion  f r o m  the  horizontal  t o  points on the  t e r r a i n  a t  f ixed 
ranges ahead. It w a s  a r b i t r a r i l y  decided t o  use two such points  spaced ahead 
a t  ranges equivalent t o  a 5-  and a 10-second elapsed f l i g h t  t ime. These 
time periods were not varied throughout t h i s  invest igat ion.  The scaling on 
these incl inat ion angles w a s  t he  same as the  p i tch  angle, namely, 15' = 1 cm, 
and the  zero reference used w a s  t he  CRT center .  

In 

Terrain-f ollowing attempts with t h i s  display were "catastrophic.  I '  

display lacked coherence between the  t e r r a i n  depicted and the  horizon 
depicted; t he  p i l o t  w a s  required t o  read two d i f fe ren t  types of presentation 
superimposed upon each other i n  an unfamiliar fashion. 

The 

The horizon bar as displayed had the  usual "inside out" or ien ta t ion  and 
i t s  motion w a s  comparable t o  the  apparent motion of the  horizon as viewed 
through the  windshield. The t e r r a i n  heights displayed had only a p a r t i a l  
"inside out" or ientat ion;  tha t  i s ,  as the  a i r c r a f t  climbed up from the  
t e r r a i n ,  t he  t e r r a i n  height indicators  moved i n  the  downward d i rec t ion  simi- 
lar t o  the  apparent downward motion of t e r r a i n  perceived through the  wind- 
shield of a climbing a i r c r a f t .  However, as the  a i r c r a f t  w a s  varied i n  p i tch  
a t t i t ude  only, no motion w a s  evident on the  t e r r a i n  height indicators  which 
confl ic ted with a complete "inside out" presentation of t he  t e r r a i n .  It w a s  
t h i s  discrepancy which caused the  display t o  give the  impression of being 
two superimposed instruments, requiring divided a t ten t ion ,  ra ther  than the  
desired s ingle  instrument giving a unif ied l'view'' of t he  outside world. 



Display B 

The second display attempt ( f i g  . 2( b )  ) di f fe red  from the  f i r s t  only i n  
t h e  zero reference of t he  t e r r a i n  ahead and below. Ln display B the  center 
of t he  horizon bar w a s  used as the  zero point t o  give a complete "inside out" 
presentation. Thus, if a h i l l t o p  a t  t h e  same elevat ion as the  a i r c r a f t  were 
ahead and the  a i r c r a f t  were held i n  l e v e l  f l i g h t ,  each t e r r a i n  indicator  
would r i s e  t o  the  center of the  horizon bar and then f a l l  i n  succession as 
the  simulated a i r c r a f t  passed over t he  h i l l t o p .  

Tracking e f f o r t s  with t h i s  display were a l so  unsuccessful, though a 
de f in i t e  improvement w a s  noted. The display, with the  exception of the  
terrain-below indicator ,  gave a scaled down picture  of t he  " r ea l  world'' 
d i r e c t l y  ahead as it would appear through the  windshield. The scaling of 
displayed angles t o  real  angles as would be seen through the  windshield was 
1 t o  13 as determined f r o m  the  subject ' s  ocular distance f rom the  display 
(19 i n .  ) and the  display scaling. 

Display C 

To increase the  magnification of angles t o  d i s t an t  (10 see) h i l l s  the  
scaling w a s  increased so t h a t  t e r r a i n  and p i t ch  angles were 6O/cm on the  CRT, 
f igure  2 ( c ) .  
inadequate as shown by f igure  13 which i s  a pen record of performance with 
t h i s  display.  Small angles perceived i n  the  10-second-ahead indicator loomed 
up too quickly i n  the  5-second-ahead indicator  f o r  adequate terrain-following 
and co l l i s ions  with h i l l t o p s  were frequent.  Apparently the  predictive infor-  
mation available w a s  being attenuated t o  t he  extent t h a t  the subject w a s  
unable t o  respond soon enough t o  the  requirement f o r  a hard pull-up. 

Though t h e  subject ' s  performance improved somewhat, it was s t i l l  

Display D 

To give more magnification t o  t h e  t e r r a i n  ahead and t o  place the  t e r r a in -  
ahead elements and the  height-below element together i n  a compatible dimen- 
sion, the  perspective e f f ec t  w a s  removed and the  angles t o  the  t e r r a i n  ahead 
were transformed t o  approximate differences i n  a l t i t u d e  between the  a i r c r a f t  
and the  points ahead ( f i g .  2 ( d ) ) .  The scal ing on t h e  t e r r a i n  ahead indicators  
w a s  s e t  at  333 ft/cm t o  agree with the  scaling of t he  t e r r a i n  d i r ec t ly  beneath 
indicator .  
of the  out side world. 

The resu l t ing  display gave an "inside out" orthographic portrayal  

Apparently t h i s  display provided a strong prediction o r  lead cue, f o r  
the  subject no longer flew in to  (o r  very near t o )  t he  f ron t s  of the  h i l l s ;  
instead, he tended t o  overcompensate and of ten acquired t o o  much a l t i t ude  
before each h i l l .  In. general, h i s  performance over t h e  h i l l t o p s  w a s  e r r a t i c .  
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The subject ' s  impression w a s  t h a t  even though the  display gave suf f ic ien t  
warning of the  magnitude of approaching h i l l s ,  there  remained an indefini te-  
ness as t o  the  a l t i t u d e  d i f f e r e n t i a l  between the  a i r c r a f t  and the  peak ahead. 
This w a s  most evident when the  approaching peak w a s  between the  points where 
t e r r a i n  heights were computed and a t  the  same time the  a i r c r a f t  a l t i t ude  w a s  
changing . 

To a l l o w  the  subject t o  f i x  the  a l t i t ude  of t he  peaks, a r e l a t ive  ( t o  
sea l eve l )  a l t imeter  w a s  added along side of t he  display.  
p i l o t  s a w  a peak ahead of t h e  a i r c r a f t  i n  the  10-second-ahead display element, 
he estimated i t s  height above t h e  a i r c r a f t  d i r ec t ly  from t h e  display and 
mentally added it t o .  t h e  al t imeter  reading t o  determine the  r e l a t ive  a l t i t ude  
of t h a t  peak. Then t h e  subject '*climbed" above t h a t  a l t i t u d e  and f e l t  secure 
t h a t  he would not contact t he  ground. 

Thus, when the  

With t h i s  r e l a t ive ly  crude technique of using display D and an al t imeter ,  
a 90-minute terrain-following run w a s  made with no ground contacts.  

Display E 

In  display E ( f i g .  2 ( e ) )  t he  need f o r  the al t imeter  w a s  eliminated 
because an addi t ional  element w a s  introduced which represented the  maximum 
a l t i t ude  of the  t e r r a i n  10 seconds ahead l e s s  t he  current a l t i t ude  of the  
a i r c r a f t .  This element, a s ingle  dot on the  CRT y-axis,  w a s  allowed t o  
coincide with the  t e r r a i n  10-second-ahead bar as long as the  t e r r a i n  ahead 
was l e v e l  or sloping upward. Should the  indicator  f o r  t he  10-second-ahead 
t e r r a i n  begin t o  f a l l ,  indicat ing t h a t  a peak w a s  approaching, the  "memory" 
dot w a s  l e f t  as an indicat ion of t he  height of t h i s  peak r e l a t ive  t o  the  
a l t i t u d e  of t he  a i r c r a f t .  A t  t h i s  time the  p i l o t  had 10 seconds t o  bring 
t h i s  do t  t o  some distance below the  horizon l i ne  so as t o  c lear  the  peak 
ahead by a desired height.  A button switch was a l s o  provided, which when 
act ivated by the  subject ,  drove the  "memory" dot back down t o  coincide w i t h  
the  10-second-ahead t e r r a i n  bar. A sample of terrain-following with t h i s  
display i s  presented i n  f igure  14. 

Display F 

Though display E appeared t o  provide a l l  t he  required elements for 
reasonable tracking of t h e  generated t e r r a i n ,  it w a s  believed t h a t  a greater  
resolut ion of both p i t ch  angle and t e r r a in ' he igh t  would allow t e r r a i n -  
following with l e s s  ground clearance. Subsequently, t he  scaling on a l l  
height information w a s  changed t o  250 ft/cm ( f r o m  333 ft/cm) and the  scaling 
on the  p i tch  angle w a s  changed t o  2!.2O/cm (from 60/cm). 
magnification f o r  p i tch  angle w a s  selected for severa l  reasons. F i r s t ,  it 
appeared t h a t  level-f  l i g h t  -a l t i tude  control  improved as the  magnification of 
t he  p i tch  angle w a s  increased. Within cer ta in  l imi t s  (not  explored in  t h i s  
study) t h i s  e f f ec t  w a s  understandable, inasmuch as a f a i r l y  high resolut ion 

This f a i r l y  high 



of p i t ch  angle became a prerequis i te  f o r  good a l t i t u d e  control  a t  t he  
simulated veloci ty ,  espec ia l ly  since r a t e  of climb information w a s  not ava i l -  
able t o  t he  p i l o t .  Second, a l i m i t  on magnification of p i t ch  angle w a s  
approximately establ ished by terrain slope ( i . e . ,  some of t he  t e r r a i n  slopes 
generated were as high as 300 f t / s e c )  or an inc l ina t ion  of 1-3'. 
foregoing considerations placed the  scal ing of p i t ch  angle a t  approximately 
2'/cm, it w a s  decided t o  take advantage of t h e  f a c t  t h a t ,  f o r  the  5-second- 
ahead t e r r a i n  indicator ,  height and angle coincided if  p i t ch  scaling w a s  
2.2O/cm; t h a t  is, a point 1-1/4 miles ahead of t h e  a i r c r a f t  and 250 f e e t  
below the  a l t i t u d e  of t he  a i r c r a f t  would a l so  be 2.2' below the  horizon. 
This allowed a simultaneous presentation of t h e  r e l a t i v e  angle and the  rela- 
t i v e  height t o  t he  terrain 5 seconds ahead. Thus, i f  the  r e l a t ive ly  s m a l l  
deviations i n  angle of a t tack  t h a t  would occur at  t h i s  f l i g h t  mode were 
ignored, t he  p i l o t  need only point the  nose of t he  a i r c r a f t  ( indicated by the  
miniature a i rplane f ixed i n  the  CRT center)  t o  a desired height above a 
point on t h e  t e r r a i n  5-seconds-ahead indicator  t o  know t h a t ,  if he held t h i s  
a t t i t ude ,  he would a r r ive  over t h a t  point,  i n  5 seconds, at the  preselected 
height.  

Since t h e  

The scal ing e f f ec t  of display F i s  i l l u s t r a t e d  i n  f igure  2 ( f ) .  

Terrain-f ollowing performance with display F w a s  not d i r e c t l y  comparable 
with performance f o r  any of t he  preceding displays since a t  t h i s  time the  
t e r r a i n  generator w a s  modified t o  b e t t e r  represent ac tua l  t e r r a i n  (Cal i fornia  
h i l l s ,  see appendix B ) .  
by the  t e r r a i n  modification, t he  subsequent improvement i n  performance cannot 
be solely a t t r i bu ted  t o  changes made to t he  dis,play. A sample of t e r r a i n -  
following under these conditions is  presented i n  f igure  15. 

Because the  terrain-following task  w a s  made eas i e r  
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APPENDIX D 

METHOD USED TO EvALUA!IE TERRAIN-FOLLoWmG PERFO.RMA.NCE 

I n  order t o  assess  the  e f f e c t s  of changes in the  v i sua l  display,  of 
fa t igue ,  e t c . ,  a re la t ionship  between the  t a s k  and performance w a s  defined 
so t h a t ,  when sample data  were analyzed, improvement or degradation of per- 
formance could be detected.  Since the  requirement w a s  not t o  describe per- 
formance but only t o  rate performance, it w a s  believed t h a t  t he  simple l i nea r  
re la t ionship of equation (1) would be adequate. 

A ( t )  = a T ( t )  + b + e ( t )  

a i r c r a f t  a l t i t u d e  at  time t 

slope parameter 

t e r r a i n  a l t i t i d e  a t  time t 

t r ans l a t ion  parameter 

e r ro r  i n  l i nea r  f i t  a t  time t 

It w a s  assumed t h a t  performance w a s  best  when t h e  a i r c r a f t  w a s  following 
the  t e r r a i n  contour exactly a t  a constant height .  
un rea l i s t i c  , and possibly undesirable where high-frequency t e r r a i n  is  encoun- 
te red ,  it w a s  believed t h a t  performance improved when it tended toward t h i s  
ult imate and vice versa .  

Though t h i s  may appear 

To evaluate the  parameters i n  equation (l), it w a s  decided t o  use data  
a t  independent sample points;  consequently, equation (1) becomes 

A i  = a T i  + b + e t  

where the  subscript denotes the  i t h  sample. 

To obtain independent samples, it w a s  reasoned t h a t  the  time in t e rva l  
f o r  sampling need only be as great  as t h a t  at  which no autocorrelation was 
evident i n  the  t e r r a i n  since it w a s  unlikely t h a t  the  a i r c r a f t  f l i g h t  path 
would exhibi t  any autocorrelation beyond t h i s  i n t e rva l .  The method of 
determining t h i s  time in t e rva l  w a s  explained i n  appendix B .  

The method of l e a s t  squares was used t o  f ind  values of a and b f o r  
N 

i =i 
which C e i 2  i s  a minimum; these are:  



N ~ T  - mcT a =  
NEC - (n)2 (3)  

where the  sums are  over -a l l  sample points .  

Formulas ( 3 )  and (4)  can be rewrit ten i n  t h e  more familiar s t a t i s t i c a l  
notation (keeping i n  mind t h a t  no d i s t r ibu t ion  functions have been assumed) : 

SA 
sr a = r -  

b = A  - F(r 8) 
( 5 )  

where and ? are  sample means, SA and % are  sample standard deviations,  
and r i s  the  sample correlat ion coe f f i c i en t .  The elements of formula ( 5 )  
were used as follows i n  evaluating terrain-following performance. The corre- 
l a t ion  coef f ic ien t ,  r ,  i n  the  ultimate case would be 1.00 and any lower 
value, t h a t  is, 1 > r > 0, would indicate a lack of phasing with the  t e r r a i n  
o r  motion not associated with the  t e r r a i n .  The r a t i o ,  SA/ST, can be i n t e r -  
preted as representing the  over-al l  amplitude r a t i o  of a i r c r a f t  motion to 
t e r r a i n  motion and i n  the  ultimate case would a l s o  be 1.00.  A value greater  
than 1.00 would suggest t h a t  the  p i l o t  was e i t h e r  overcontrolling ( i  . e . ,  
f ly ing  high over the  h i l l t o p s  and low in  the  va l leys)  o r  w a s  generally devi- 
a t ing  about t he  desired f l i g h t  path ( the  l a t t e r  case would be excluded i f  t he  
correlat ion coef f ic ien t  were 1 .00) .  
inference could be made t h a t  the p i l o t  w a s  smoothing, or  not responding t o  
the  t e r r a i n .  For the  purpose of t h i s  study, performance w a s  considered t o  
have improved when the  values of 
have degraded when r moved toward zero and SA/% deviated from 1.00 i n  
e i the r  d i r ec t ion .  

If t h i s  r a t i o  were l e s s  than 1.00, the  

r and SA/ST moved closer  t o  1.00, and t o  

Though the  parameter b as determined i n  formula ( 6 )  i s  most useful  i n  
describing the  f l i g h t  path of the  a i r c r a f t  with respect to the  t e r r a i n  ( i , e . ,  
eq.  (1) f i t s  - t he  f l i g h t  path to given t e r r a i n )  , it w a s  decided t o  use the  more 
familiar H, mean height above the  t e r r a i n ,  i n  assessing performance. Note 
t h a t  the  subs t i tu t ion  of = E + 5; i n  formula ( 6 )  gives:  
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- 
which i s  another way of saying t h a t  H i s  meaningful only if the  a i r c r a f t  
f l i g h t  path i s  approximating the  t e r r a i n .  

The standard deviation of a i r c r a f t  height above the  t e r r a i n ,  SHY w a s  
a l s o  included i n  t h e  t ab le s  of t h i s  report  since it w a s  ant ic ipated t h a t  many 
readers would want t h i s  information; however, i n  doing so, it i s  pointed out 
t h a t  SH i s  not independent of t he  other s t a t i s t i c s  already discussed. 

The appropriateness of assuming a l inear  re la t ionship  between a i r c r a f t  
f l i g h t  path and t e r r a i n  can be determined as f o l l o w s .  
mulas ( 5 )  and (6)  give the  following expressions f o r  t h e  mean and standard 
deviation of t he  e r ro r  t e r m  i n  equation ( 2 ) .  

Equation (2 )  and f o r -  

Formula ( 9 )  assures t h a t  the mean e r ro r  i n  the  f i t t e d  l i nea r  expression 
w i l l  always be zero.  
e = 0) of t h i s  e r ro r  term, shows the dependence of the  v a l i d i t y  of a l inear  
assumption on the  value of t he  correlat ion coef f ic ien t .  

Formula (lo), the  standard deviation (or M S  since - 

21 
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(a)  Display A; angles t o  t e r r a i n  
ahead scaled 15'/cm, t e r r a i n  below 
333 ft/cm; scope center i s  zero 
reference . 

(b )  Display B; same as A except zero 
reference of t e r r a i n  t rans la ted  t o  
horizon center .  

( e )  Display C; p i t ch  and t e r r a i n  
angles resealed t o  6'/cm. 

(d)  Display D; t e r r a i n  ahead shown 
as r e l a t i v e  heights; 333 ft/cm. 

( e )  Display E; height memory dot 
(maxima of t e r r a i n  10 see ahead) 
added. 

( f )  Display F; heights resealed t o  
250 ft/cm; p i t ch  angle = 2.2O/cm. 

Figure 2.  - Variations i n  s i t u a t i o n a l  displays.  
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r i J  Figure 3.-  Subject's position re la t ive  t o  the  CRT and controller.  
Ln 
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Figure 4 .  - Block diagram of experimental configuration. 
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Figure 5 .- Histogram of height above te r ra in ;  simulated terrain-following using display C . 
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Figure 6.-  Histogram of height above t e r r a in ;  simulated terrain-following using display D and 
an a l t imeter .  
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Figure 7.  - Histogram of height above te r ra in ;  simulated terrain-following using display E .  
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Figure 8. - Histogram of height above te r ra in ;  simulated terrain-following using display F . 
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(b)  Sample prof i le  of the  reduced-frequency simulated t e r r a in  of t h i s  study (Mach number 1 . 2 ) .  

Figure 10.- Comparison of t e r r a i n  f o r  two studies.  
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(b)  Sample p ro f i l e  of t he  simulated t e r r a i n .  

Figure 11. - High-f requency t e r r a i n  generat ion. 
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Figure 12. - Comparison of the  high-frequency and low-frequency simulated t e r r a i n  of t h i s  study 
with a sample of h i l l y  California t e r r a i n  (Oakland t o  Avena1 v i a  V-107). 
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Figure 13.- Sample of performance in  simulated terrain-following using display C .  
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